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Abstract. We consider the so-called generalised hyperbolic functions a n d  their properties. 
I n  particular, we find some n e h  relationships with the Bessel functions a n d  that they occur 
naturally in many physical systems whenever a Z,  symmetry appears  Examples are  
Z ,-symmetric spin systems as well as  electronic systems with periodic boundary conditions.  

1. Introduction 

Several problems in theoretical physics display cyclic permutational symmetry which 
could be conveniently described as Z, symmetry, where Z y  is the usual discrete 
Abelian group of order N. The simplest example is the one-body problem in one 
dimension with periodic boundary conditions. The wavefunction is naturally a plane 
wave with a momentum k obeying the quantisation condition (exp ik )  = 1 where N 
is the number of sites on  the lattice. The involutional property of exp ik can be carried 
over to matrices, then we have AN = I in some systems involving spins which can take 
values on the N regular positions of the unit circle (e.g. the so-called 'clock' model). 
Through the process of exponentiation, which is motivated basically by the Boltzmann 
weights in statistical mechanics, numbers and  matrices which are involutory are directly 
related to the generalised hyperbolic functions. 

These functions made their first appearance in the work of Poli (Poli 1946) and  
are to be understood as generalisations of the usual hyperbolic functions. So instead 
of a basis consisting of cosh x and sinh x we shall have N functions playing the same 
r61e. They also obey a simple differential equation with constant coefficients, but of 
order N.  As we shall see, they have simple addition rules and are handy to treat some 
physical problems. Moreover, we shall show that they are connected to Bessel functions 
via summation formulae. Thus they d o  not occur as a mathematical curiosity but 
present another aspect of the Bessel functions. 

This paper is organised as follows. In section 2 we shall introduce the generalised 
hyperbolic functions and  the various definitions which concern them. We then present 
their properties: derivative, integral, addition rules and asymptotic behaviour. Section 
3 is devoted to the relation with Bessel functions and some additional properties. In 
section 4 we present some simple applications in statistical mechanics: the one- 
dimensional Potts models. Our aim is to demonstrate the usefulness of these functions 
as they have already appeared in our recent work on the atomic limit of the one- 
dimensional Hubbard model (Audit and Truong, 1989). 
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2. Generalised hyperbolic functions of  order N 

To simplify the approach we define the generalised hyperbolic functions as entire 
functions given by the power series: 

(1) 

We observe that this is a piece of the exponential series. Hence each of the A>(x)  is 
bounded by exp(x/.  For N = 2 we recover immediately 

Ai(x) =cosh x A f (x )  = sinh x. ( 2 )  

Since these two hyperbolic functions are simply linear combinations of exponentials, 
it is also natural to look for such representation for the generalised hyperbolic functions 
of order N. We have: 

1 N - l  

N k = O  
A;Y(x) =- w - J h  exp(w“x) (3) 

where w is the Nth primitive root of unity (i.e. w N  = 1). We observe that always 
AY(0) = 6,,o. This is due to the fact that 1 + w +. . . + w ” - ’  - - 0. So we may say that we 
have for general N one cosh x-like function: the A:, and ( N  - 1) sinh x-like functions 
although parity is not an obvious property. 

Inverting (3) yields N generating functions for the generalised hyperbolic functions: 

h’ - I 

exp(wPx) = W~’A:(X). 

It is clear that all the AY(x) are real functions 
0, 1, . . . , ( N  - 1)  are distributed symmetrically with 
complex plane. If N is even then there is an extra 
terms in (3) may be pairwise grouped so that the A: 

, = o  
(4) 

because the N roots wJ,  j =  
respect to the real axis in the 
symmetry in the sense that the 
are given by 

1 
A fP  =- {[ exp(x) + (- 1 )’ exp( -XI]  + w-’[exp(wx) + (-  1 )-’ exp( -cox)] + . . . 

2P 

[exp(w”-’)x + (-1)’ exp(-w”-’x)]}. ( 5 )  + w - J ( P - l l  

Since u p  = -1, depending on the parity of j ,  we will get a sum of cosh or sinh. 
The Ay(x) are also periodic with respect to the index j :  

A;’(x) = A ; ) I + N ( ~ ) .  (6) 

As it is known from the usual hyperbolic functions, derivation and integration are 
equivalent to shifting the index forward and backward: 

( 7 )  

This gives the results that the function A,fl(x) is ( N  - 1) flat at the origin, A ;“(x) has 
a slope 1 and an inflexion point at the origin, A ~ ( X )  is only simply flat and has a 
non-zero curvature at the origin, etc. 
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Asymptotically we see that for large x + m ,  since A Y ( x )  consists of exponentials 
(see (3) ) ,  it will be dominated by the largest exponential: 

(8) 
1 

A ;”( x )  - - exp(x).  
N 

Thus all the A curves are bounded by exp(x).  
To obtain the addition rules we compute the following identity in two different 

ways: exp[(x+y)w”] = exp(xwP) e x p ( p ’ ’ )  using the generating function in (4). The 
result is simply: 

it generalises the known identities for cosh and sinh. In particular, we have taken 1 = 0 
and x = -y in the previous formula 

(10) 
generalising the identity: cosh’(x) - sinh’(x) = 1. Finally iterating the differentiation 
of (7) and using the periodicity condition of (6), we arrive at the differential equation 
for the A , h ( x )  functions: 

A ~ ( x ) A ~ ( - x ) + A ~ ( x ) A , ~ ~ , ( - x ) + .  . .+A,: . , ( x ) A , ~ ( - x )  = 1 

- A ,? ( X )  = A: (x). (11) 
d ”  

d x  

There also exists a ‘trigonometric’ version of the A ; ( x )  functions (Erdelyi et a1 
1955) but we shall not dwell on them here. 

3. Relation to the modified Bessel functions 

This connection seems to be new and it is based on the generating function of the 
modified Bessel functions (Magnus et a1 1966): 

X 

exp(z COS 6 )  = IO( Z )  + 2 c I,( 2 )  COS(  k6). 
h = I  

Putting 6 = p 2 ~ /  N for p = 0, 1 , .  . . , ( N  - l ) ,  and using the fact that 

we can insert the generating function in (4) to obtain the basic identity: 
N - l  N - l  

exp(rcosp$)  = n = O  m = O  c h ~ ( $ A : : ( I ) ~ p ( m - n ~  

where w = e x p ( 2 i ~ /  N). The infinite sum on the Bessel functions may be thus replaced 
advantageously by the double finite sums on the A functions: 

f o r p = O ,  1 , . . . ,  ( N - 1 ) .  
Now using the fact that 

2 T  
2 COS kp - = 2 NSA,yN 

N - 1 

p=O N 
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where q is an integer, we can sum in (14)  over p from 0 to ( N - 1 )  to obtain a new 
identity for the generalised hyperbolic functions: 

In fact, (14) really represents N different identities for each 
system can be simplified as follows: 

(15) 

p from 0 to ( N  - 1).  This 

where 

f o r p = O ,  1 , . . . ,  (N-1) .  
Generalised hyperbolic functions turn out to be useful in transforming some identity 

involving Bessel functions (Hansen 1975, Audit and Truong 1989). For example, we 
have 

f C ' I ~ , ~ ~ ( ~ )  = z exp(;) r" exp( -$) Ic,-l(t) d t  
I, = O  

117) 

where a and  c are two arbitrary numbers. We may choose c = exp (p2i.rr/ N )  therein 
and  sum over p.  Then using the definition of the function A:is), we obtain the 
following remarkable identity: 

This has been used recently in the one-dimensional Hubbard model in the so-called 
atomic limit where we have exploited fully the properties of the A;r ' (x )  function to 
compute the free energy with one hole present. 

4. Some physical applications 

We shall discuss here mainly applications in statistical mechanics, which extend a 
recent example in solid state physics (Audit and  Truong 1989). Although some 
connections have been established before between two-dimensional Potts models and 
generalised hyperbolic functions (Kwasniewski 1985) we shall discuss mainly so-called 
one-dimensional Potts models. 

Consider a chain of M sites with periodic boundary conditions. Each site carries 
a spin S, which takes the values w p  where w = e x p ( 2 i ~ i / N )  and p = 0, 1,. . . , ( N  - 1).  
The spins interact through only their nearest neighbours and  the corresponding 
Boltzmann weight is given by 

K being a coupling constant. Basically it means that the interaction energy (divided 
by k T )  is equal to ( N  - 1 ) K  if the neighbouring spins are lined up, if not then it is 
equal to ( -  K ). The partition function of the whole chain is equal to the sum on all 
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possible configurations of the spins of the corresponding Boltzmann weights. This 
sum is evaluated normally with the use of a transfer matrix T, namely: 

2TM = Trace(T)M (19) 

whereby the matrix T is: 

/exp[( N - 1)K]  exp( -K)  . . . exp( -K)  \ 

The problem of diagonalising the matrix T is now reduced to the resolution of an 
algebraic equation of order N, for which the explicit solution is quite difficult to obtain. 

However, in the following we can show that a closed form of the trace of TM can 
be derived using the generalised hyperbolic functions. First we observe that T can be 
written as: 

(21) T =  exp[( N - 1)KlI  +exp( - K ) ( M  + M’+. . . + M ’ - I )  

where M is the cyclic matrix of order N given as: 

Clearly we have M ”  = I .  Now the trick is to calculate the trace of the operator exp(PT) 
instead of the trace of T”. Here P is the inverse temperature playing the role of a 
parameter. Now, 

exp(PT) = exp[P e x p ( N  - 1)K]  exp(P  e C K ) M . .  . exp(P  eFK)M”-I .  

Each term of the product may be expanded as in (4): 
k - 1  

exp(p  eCK)Mp = c A;(P e-K)Mpi  
J =o 

hence after substitution one finds: 
h - l  Y - l  

p = l  n I i ,=o c A2(Pe-K)Mp’:x). 

Upon taking the trace on both sides of this equation we have: 

Trace(exp P T )  = exp N A;l(P e - K ) .  . . 

with the condition 
i l  I Jl \ , 

ih-11 

1 kj,,, = 0 mod N 
k = l  

So finally the partition function %&, is obtained as 

Trace(exp/3T)lp=o. 



2800 T T Truong and Ph Audit 

Examples. 
For N = 3, the calculation is quite simple and  yields: 

= e x p  p e2"[(h~) '+(A:) '+(A~)Z][(e 'K + 2  e - K ) M  +2(eZK - e - " ) M ]  

+ e x p p  e"2[A:A~+A~A:+A:A~][(e'K +2e- ')" --(ezK -e-')"]. 

Here the A; are functions of p exp( -K)  and  using the values of A:(O) for j =0,  1 ,2 ,  
we obtain then the partition function: 

%M = ( 2  e-K + e Z K  l M  + 2(eZK - e-' ) W .  

This has also been discussed in Kwasniewski (1987). 
For arbitrary N a similar calculation leads to the following simple result: 

This result can also be checked using an  alternative method of computing the trace 
3 M -  - [ ( N - 1 e-' + e'  " - 1  ) ' I" + ( N - 1 )(e ' - 1  ' - e-' lv, 

of cyclic matrices (Audit 1985) 

5. Conclusions 

In this paper we have shown how a class of special functions introduced not long ago 
may turn out to be very useful in mathematical physics. The properties of these 
functions lend themselves to the construction of advantageous formulation of otherwise 
algebraically complicated problems. We have illustrated the use of these functions in 
some special instances of statistical mechanics and  show how to work with them. It 
is hoped that many more circumstances where they turn out to be of much more 
convenient use, will occur. 
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